干货!5G如何与行业融合发展?******
5G与行业融合的“绽放”之路
我国5G应用蓬勃发展,进入规模化探索新阶段。目前,国民经济20个门类中有15个行业,97个大类中有39个行业均已应用5G。5G与行业融合过程中,受行业自身发展规律、5G技术及产业发展规律和宏观发展环境等多重因素影响,呈现梯次性导入、渐进式发展趋势。由于不同行业5G发展呈现明显的阶段性,应分类施策推动5G与行业融合发展。
5G应用蓬勃发展,进入规模化探索新阶段
随着工业4.0时代的到来,数字化转型已成为各行业发展的必然趋势。作为新基建的重要组成部分,以5G为代表的新一代信息技术逐步与行业基础设施相融合,形成新型行业信息化基础设施。我国在国家政策、应用探索、产业融合等多方面积极推动5G与行业融合发展。
在政策方面,2020年3月,中共中央政治局常务委员会会议强调“加快5G网络、数据中心等新型基础设施建设进度”;“十四五”规划和2035年远景目标纲要明确提出“构建基于5G的应用场景和产业生态”。
为落实党中央、国务院的决策部署,多项鼓励5G发展与应用的政策或通知陆续出台。2021年7月,工业和信息化部等十部门印发《5G应用“扬帆”行动计划(2021-2023年)》(以下简称《行动计划》)。该《行动计划》提出8大专项行动及32个具体任务,明确了我国未来三年重点行业的5G应用发展方向,并系统性地部署相关推进工作。各地方政府也将5G应用作为地方经济的重要支柱型产业,纷纷出台相关产业支持政策。截至2021年8月底,全国省、市、区共出台5G政策569个,其中省级67个、市级259个、区县级243个。
在产业探索方面,从2019年我国5G网络正式开始商用,5G与行业融合试点项目的范围和规模逐步扩大,以三大运营商为代表的ICT(信息和通信技术)产业界加速与各垂直行业开展5G应用探索。据统计,工业和信息化部举办的“绽放杯”5G应用征集大赛项目数量从2018年的330个增长到2021年的超过1.2万个,涉及工业互联网、医疗健康、智慧交通、智慧金融、文体娱乐等20多个行业领域,近7000家政府机构、企业、科研院所、行业协会等单位参与,覆盖我国31个省(自治区、直辖市)及香港特别行政区。
从5G应用项目成熟度和商业落地情况来看,我国5G应用已实现从“0”到“1”的突破。2021年第四届“绽放杯”5G应用征集大赛近半数项目实现落地,15%以上的项目实现“解决方案可复制”,我国5G应用已进入“1”到“N”的发展阶段。下一步的探索方向是如何在不同行业实现规模化应用。
5G与行业融合梯次性导入,呈渐进式发展趋势
5G与行业融合发展进程遵循着客观发展规律,这个规律受到行业自身发展规律、5G技术及产业发展规律和宏观发展环境三方面的影响。
从行业来看,目前处于数字化转型的关键期,其对数字化技术的接受度在快速提升,原有的生产系统、产业体系、经营管理模式、商业模式等也在发生急剧变革,这为5G快速融入提供了良好条件。但是,由于不同行业有不同的产业发展周期、发展节奏,也会导致5G与不同行业融入的深度、广度和速度存在差异性。
从需求侧来看,首先需要明确行业场景需求,解决“为什么”用5G的问题,还要考虑行业原有数字化基础,解决“如何用”5G的问题。目前我国的第一、二、三产业数字化基础发展差异性较大,基础设施数字化率整体占比不高,影响了5G融入行业的速度。同时,企业对新技术的接受度、应用效果的显性度、探索的积极性等都影响5G在行业的发展进程。从供给侧来看,移动通信系统从5G开始才真正为垂直行业服务,3G、4G等都是面向消费者市场,发展周期和发展驱动力受消费者影响。消费者用户是统计型需求且消费是冲动型,因此在技术和产业发展节奏、网络更新速度等方面,ICT企业的话语权较高。但行业客户不同,行业客户具有局部聚焦、决策理性等特征,内部具有选择和决策机制,这就要求5G网络进入行业时,要能经受住行业选择流程的考验,如应用效果带来的经济价值测算、对未来转型发展影响等。原有5G技术和产业发展节奏要及时适应不同行业诉求,原来“需求发现-技术研究-国际标准化-国内标准化-产业化”的5G技术和产业迭代周期一般在两年及以上,再考虑应用场景适配、应用推广等时间,这些都将导致5G在行业的应用会是渐进式的。目前5G网络是基于R15版本的,主要满足大带宽需求,在超低时延、超高可靠保障上尚无法满足,这使得5G应用主要是在生产辅助环节、管理环节和非硬实时(10ms以上)控制场景;在R16版本对5G传输时延、可靠性进行增强后,5G会逐步渗透到生产核心控制环节;在R17阶段,随着精简化5G芯片商业化,5G终端及模组成本直线式下降,将极大推动5G行业应用规模化推广。
从发展环境来看,产业政策、商业模式、产业融合环境、宣传力度等,都会对5G应用发展起到助推作用,目前我国已经形成从国家到地方的系统性政策体系。
总体来看,受到三大因素的影响,5G与行业融合应用呈现渐进性和梯次导入发展规律,不同行业不同领域发展节奏存在一定差异性。
分类施策推进5G与各行业融合
5G与行业融合整体遵循预热、起步、成长和规模发展四个阶段。在预热阶段,ICT和行业初步接触,共同探索一些应用场景;起步阶段是双方真正开始一些小规模场景验证;成长阶段是明确场景及需求,逐步进入商业探索阶段;规模发展阶段是从大型企业向全行业企业复制推广阶段。
由于不同行业数字化基础、行业需求及探索热情不同,其发展进度和发展节奏也不相同。
总体来看,行业变革和创新意愿较强、数字化基础较好、经济条件较强的行业,其5G应用已经明确了应用场景、消除了需求不确定性,发展速度较快,进入成长期,这些行业属于先导行业,他们主要进行5G与行业系统融合和适配,承载越来越多的应用,如采矿业、工业、电力、医疗、港口等行业;对于数字化水平一般,但行业探索、创新意识和行业转型诉求较强的行业,其正在积极探索5G应用场景,挖掘5G带来的更多价值,属于潜力行业,如文旅、智慧城市、智慧物流、交通运输等行业;对于数字化水平较低,对5G应用需求不清晰,5G对其行业发展价值和作用尚不明确的行业,属于待培育行业,他们主要进行应用场景的探索,处于5G融合起步阶段,如智慧教育、智慧农业、智能油气等行业;对于数字化水平较高、有很好的数字化基础,但行业对5G需求不明确、对5G诉求也不强烈,尚未消除5G技术的不确定性,在5G应用场景、5G价值等方面尚需进一步深入挖掘,如金融、水利等行业。
5G与行业融合的价值和作用已经被越来越多的行业所认可,但受限于数字化基础条件、产业发展节奏及行业变革周期等客观发展规律,5G与行业融合不会一蹴而就。要对5G应用既给予探索热情,又保持足够耐心,这样5G融合应用才能越做越好。
作者:杜加懂 中国信息通信研究院5G应用创新中心副主任
来源:《中国网信》2022年第5期
科学家成功合成铹的第14个同位素****** 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。 近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。 此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。 不断进行探索,再次合成铹同位素 铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。 质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。 103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。 截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。 目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。 通过熔合反应,形成新的原子核 铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。 “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。 在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。 “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 拓展新的领域,推动超重核理论研究 由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。 此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。 研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。 “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |